$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: September 6th, 2019

Math 104 Assignment 1

  1. Properties of ordered sets

    Suppose $S$ is an ordered set with ordering $\preceq$.
    1. Prove that if $E \subseteq S$, then $\sup E$ is unique if it exists.
    2. Prove that if $e \in S$ is a lower bound for $E$ and $e \in E$, then $e = \inf E$.
    3. Suppose that $E \subseteq S$ is non-empty, that $x\in S$ is a lower bound for $E$, and that $y \in S$ is an upper bound for $E$. Prove that $x \preceq y$. Must it be true that $x \prec y$?
      (A word on notation: the statement "$E \subseteq S$ is non-empty" here means "$E$ is non-empty and a subset of $S$"; it does not mean "$E$ is a subset of $S$ and $S$ is non-empty".)
    4. Prove that if $E \subseteq S$ is finite and non-empty, then $\sup E$ exists in $S$ (hint: use induction). As a result, show that if $S$ is finite then it has the Least Upper Bound Property.
    5. Show that $\emptyset$ has a least upper bound if and only if $S$ has a minimum element. (An element $y \in S$ is the minimum of $S$ if $y \preceq x$ for every $x \in S$.)
  2. Suprema depend on the ordered set

    1. Give an example of sets $E \subseteq S_1 \subseteq S_2 \subseteq S_3 \subseteq \Q$ such that $E$ has a least upper bound in $S_1$ and in $S_3$, but not in $S_2$.
    2. Prove that for any example with the properties above (not only the one you happened to write down), the least upper bound of $E$ in $S_1$ must be different from the least upper bound of $E$ in $S_3$.
    3. Does there exist an example with the above properties such that $E = S_1$? Provide an example or prove that it is impossible.
  3. Properties of ordered fields

    Let $\F$ be an ordered field.
    1. Show that $\F$ does not have a minimum element.
    2. Show that $\F$ does not have a minimum positive element: that is, there is no minimum element of the subset $\F_+ = \set{x \in \F \mid x \gt 0}$.
    3. Suppose that $E \subseteq \F$ has a least upper bound, and let $x \in \F$. Show that $\sup\set{x + e \mid e \in E} = x + \sup E$.
    4. Suppose again that $E \subseteq \F$ has a least upper bound, and let $x \in \F$. Denote by $xE$ the set $\set{xe \mid e \in E}$. Show that if $0 \preceq x$ then $\sup(xE) = x\sup E$, while if $x \preceq 0$ then $\inf(xE) = x\sup E$.
  4. Some explicit extrema

    1. Prove that $\sup\set{x + y + z \mid x, y, z \in \Q, 0 \gt x \geq y \gt z} = 0$.
    2. Determine which of the following extrema exist in $\R$, and find their values. You need not supply proofs, but you should convince yourself that you could produce a proof if you were asked to do so.
      1. $\inf\set{x + y + z \mid x, y, z \in \Q, 1 \lt x \lt y \lt z}$
      2. $\inf\set{x - y + z \mid x, y, z \in \Q, 1 \lt x \lt y \lt z}$
      3. $\inf\set{x + y - z \mid x, y, z \in \Q, 1 \lt x \lt y \lt z}$
      4. $\sup\set{x + y - z \mid x, y, z \in \Q, 1 \lt x \lt y \lt z}$
      5. $\sup\set{x + y - 2z \mid x, y, z \in \Q, 1 \lt x \lt y \lt z}$
  5. Properties of irrational numbers

    1. Prove that if $q \in \Q$ and $t \in \R\setminus \Q$, then $q + t \in \R\setminus\Q$.
    2. Prove that if $q \in \Q$ and $t \in \R\setminus \Q$, then $qt \in \set{0}\cup(\R\setminus\Q)$.
    3. Prove that if $x, y \in \R$ with $x \lt y$, there is some $t \in \R\setminus\Q$ with $x \lt t \lt y$.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.