$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: December 6th, 2019

Math 104 Assignment 11

  1. A pathological function

    Let $f : [0,1] \to \R$ be defined as follows: \[ f(x) = \begin{cases} 0 & \text{ if } x \notin \Q \\ 1 & \text{ if } x = 0 \\ \frac1q & \text{ if } x = \frac{p}{q} \text{ with } p \in \Z, q \in \N, \text{ and } p, q \text{ have no common factor}.\end{cases}\] (For example, $f(0) = f(1) = 1$, $f(1/2) = 1/2$, $f(1/4) = f(3/4) = 1/4$.)

    Prove that $f$ is integrable, and find its integral.

  2. Integrals are insensitive to individual points

    1. Suppose that $f : [a, b] \to \R$ is bounded, and continuous except at finitely many points. Prove that $f$ is integrable.
    2. Suppose that $f : [a, b] \to \R$ is integrable, and $g : [a, b] \to \R$ is such that $f(x) = g(x)$ for all but finitely many $x \in [a, b]$. Show that $g$ is integrable, and \[\int_a^b f(x)\,dx = \int_a^b g(x)\,dx.\]
  3. Uniform convergence and derivatives

    For each $n \in \N$, let \begin{align*} f_n : \R &\longrightarrow \R \\ x &\longmapsto \frac{x}{1+nx^2}. \end{align*} Show that the sequence $(f_n)_n$ converges uniformly (on $\R$) to some function $f$, and that $(f_n')_n$ converges to $f'$ pointwise on $\R\setminus\set0$, but not at $0$.
  4. Uniform convergence and boundedness

    Suppose that $(f_n)_n$ is a sequence of functions with $f_n : M \to \R$, so that each $f_n$ is bounded. Suppose further that $(f_n)_n$ converges uniformly to some $f : M \to \R$. Show that $(f_n)_n$ is uniformly bounded: that is, there is some $T \in \R$ so that for all $x \in M$ and all $n \in \N$, \[\abs{f_n(x)} \leq T.\]
  5. Functions orthogonal to polynomials are zero

    Let $f : [0, 1] \to \R$ be continuous.
    1. Show that $f \equiv 0$ if \[\int_0^1 f(t)^2\,dt = 0.\](The notation $f \equiv 0$ means $f(t) = 0$ for all $t$ in the domain of $f$.)
    2. Suppose that for every $n \in \N\cup\set0$, \[\int_0^1 f(t)t^n\,dt = 0.\] Show that $f \equiv 0$. (Hint: by the end of the week, we will have proved the following theorem which you may find useful: if $K \subseteq \R$ is compact and $g : K \to \R$ is continuous, there is a sequence of polynomials $(p_n)_n$ which converges uniformly to $g$ on $K$. Use this to show that $\int_0^1 f(t)^2\,dt=0$.)

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.