$$
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\sq}[1]{\left[#1\right]}
\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left\langle#1\right\rangle}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\intr}{{\large\circ}}
\newcommand{\limni}[1][n]{\lim_{#1\to\infty}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
$$
Due: September 13th, 2019
Math 104 Assignment 2
Some useful facts which would have been nice to have earlier
Prove the following useful facts.
- If $T \subseteq \Z$ is non-empty and bounded above in $\R$, then $\sup T \in T$. (In particular, $\sup$$T \in \Z$.)
Suppose that $\emptyset \subsetneq E_1 \subseteq E_2 \subseteq \R$.
If $E_2$ is bounded above, then $\sup E_1$ exists and $\sup E_1 \leq \sup E_2$.
(Note: the symbol "$\subsetneq$" means "is a proper subset of", so $A \subsetneq B$ means $A \subseteq B$ and $A \neq B$.
Thus $\emptyset \subsetneq E_1$ means "$E_1$ is non-empty". In contrast, the symbol $\nsubseteq$ means "is not a subset of".)
- If $x, y \in \R$ with $0 \leq x \leq y$ then $x^2 \leq y^2$ and $x^{1/2} \leq y^{1/2}$.
- If $S$ is an ordered set, $E, F \subseteq S$ have suprema in $S$, and they have the property that for every $e \in E$ there is $f \in F$ with $e \preceq f$, then $\sup E \preceq \sup F$.
Suprema in the rationals are suprema in the reals
- Suppose that $E \subset \Q$ has least upper bound $t \in \Q$.
Show that $t$ is also the least upper bound of $E \subset \R$.
- Use the above to show that $\Q$ does not have the Least Upper Bound Property. (Hint: consider a set like $\set{q \in \Q \mid q^2 \lt 2}$.)
Metrics?
For each of the following, determine if the given function is a metric on the given set.
- $S_A = \R$, $d_A(x, y) = \sqrt{\abs{x-y}}$
- $S_B = \Z$, $d_B(j, k) = \abs{j-k}^2$
- $S_C = \R$, $d_C(x, y) = \abs{x^3-y^3}$
- $S_D = \R$, $d_D(x, y) = \abs{x^4-y^4}$
- $S_E = \R$, $d_E(x, y) = \abs{x^5-y^3}$
- $S_F = \R$, $d_F(x, y) = \begin{cases}\abs{x - y} & \text{ if } xy \neq 0\\ 0 & \text{ if } x = y = 0 \\ 1 + \abs{x-y} & \text{ otherwise}\end{cases}.$
Building product metrics
Suppose that $S$ and $T$ are metric spaces with metrics $d_S$ and $d_T$ respectively.
Recall $S \times T = \set{(s, t) : s \in S, t \in T}$.
- Take
\begin{align*}
d_1 : (S\times T) \times (S\times T) &\to \R_{\geq0} \\
((s_1, t_1), (s_2, t_2)) &\mapsto d_S(s_1, s_2) + d_T(t_1, t_2).
\end{align*}
Show that $d_1$ is a metric on $S\times T$.
- Take
\begin{align*}
d_\infty : (S\times T) \times (S\times T) &\to \R_{\geq0} \\
((s_1, t_1), (s_2, t_2)) &\mapsto \sup\set{d_S(s_1, s_2), d_T(t_1, t_2)}.
\end{align*}
Show that $d_\infty$ is a metric on $S\times T$.
Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.
Exponentials
Fix $\beta \geq 1$.
- Show that if $a,c \in \Z$ and $b, d \in \N$ with $\frac ab = \frac cd$, then
$$\paren{\beta^{1/b}}^a = \paren{\beta^{1/d}}^c.$$
We can therefore define $\beta^r$ consistently for any rational $r \in \Q$ (i.e., in a way that does not depend on the representation of $r$).
- Show that for any $p, q \in \Q$, $\beta^{p+q} = \beta^p\beta^q$.
- For $q \in \Q$, show that $$\beta^q = \sup\set{\beta^p : p \in \Q, p \leq q}.$$
(This requires showing both that the supremum exists, and that the quantites are equal.)
We now define $\beta^x = \sup\set{\beta^p : p \in \Q, p \leq x}$ for $x \in \R$, and note that this agrees with our earlier definition of $\beta^q$ for $q \in \Q$; we also define $\gamma^x = \paren{\frac1\gamma}^{-x}$ for $0 \lt \gamma \lt 1$.
- Show that for any $x \in \R$, $\sup\set{\beta^p : p \in \Q, p \leq x} = \sup\set{\beta^p : p \in \Q, p \lt x}$. (This provides extra wiggle room will be useful in the next part.)
- Show that for all $x, y \in \R$, $\beta^{x+y} = \beta^x\beta^y$.
- Extend this definition to $0 \lt \gamma \lt 1$ by setting $\gamma^x = \paren{\frac1\gamma}^{-x}$.
- Verify that this formal definition of exponential satisfies all the properties you're used to. For example:
- $\beta^{xy} = (\beta^{x})^y$;
- If $0 \lt \alpha \lt \gamma$ then $\alpha^x \lt \gamma^x$ for $x \gt 0$ and $\alpha^x \gt \gamma^x$ if $x \lt 0$.
More metrics?
- Suppose that $S$ is a set and $M$ is a metric space with metric $d_M$.
Let $f : S \to M$ be a function.
Show that the map $d_f : S\times S \to \R_{\geq0}$ given by $d_f(s, t) = d_M(f(s), f(t))$ is a metric if and only if $f$ is injective.
- Take
\begin{align*}
d_2 : (S\times T) \times (S\times T) &\to \R_{\geq0} \\
((s_1, t_1), (s_2, t_2)) &\mapsto \sqrt{d_S(s_1, s_2)^2 + d_T(t_1, t_2)^2}.
\end{align*}
Is $d_2$ a metric?
-
Let $\mathcal{P} = \set{a_0 + a_1x + \cdots + a_nx^n \mid n \in \N_0, a_0, \ldots, a_n \in \R}$ be the set of polynomials with real coefficients.
Define a map $d_\infty : \mathcal{P}\times\mathcal{P} \to \R$ by
\[d_\infty(f, g) = \sup\set{\abs{f(x) - g(x)} : 0 \leq x \leq 1}.\]
Is $d_\infty$ a metric?
-
Suppose $S$ and $T$ are metric spaces with metrics $d_S$ and $d_T$ respectively.
For which $p \in \R$ is
\begin{align*}
d_p : (S\times T)\times(S\times T) &\to \R_{\geq 0}\\
((s_1, t_1), (s_2, t_2)) &\mapsto \paren{d_S(s_1, s_2)^p + d_T(t_1, t_2)^p}^{\frac1p}
\end{align*}
always a metric, no matter what $S$ and $T$ are?
For which is it never a metric?
For which does it depend on $S$ and $T$?
- Let $G = (V, E)$ be a graph. Define a metric on $V$ by setting $d_G(v, w)$ to be the length of the shortest path in $G$ from $v$ to $w$. Is $d_G$ a metric? If not, is there a simple way to change it to make it one?