$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: September 13th, 2019

Math 104 Assignment 2

  1. Some useful facts which would have been nice to have earlier

    Prove the following useful facts.
    1. If $T \subseteq \Z$ is non-empty and bounded above in $\R$, then $\sup T \in T$. (In particular, $\sup$$T \in \Z$.)
    2. Suppose that $\emptyset \subsetneq E_1 \subseteq E_2 \subseteq \R$. If $E_2$ is bounded above, then $\sup E_1$ exists and $\sup E_1 \leq \sup E_2$.

      (Note: the symbol "$\subsetneq$" means "is a proper subset of", so $A \subsetneq B$ means $A \subseteq B$ and $A \neq B$. Thus $\emptyset \subsetneq E_1$ means "$E_1$ is non-empty". In contrast, the symbol $\nsubseteq$ means "is not a subset of".)

    3. If $x, y \in \R$ with $0 \leq x \leq y$ then $x^2 \leq y^2$ and $x^{1/2} \leq y^{1/2}$.
    4. If $S$ is an ordered set, $E, F \subseteq S$ have suprema in $S$, and they have the property that for every $e \in E$ there is $f \in F$ with $e \preceq f$, then $\sup E \preceq \sup F$.
  2. Suprema in the rationals are suprema in the reals

    1. Suppose that $E \subset \Q$ has least upper bound $t \in \Q$. Show that $t$ is also the least upper bound of $E \subset \R$.
    2. Use the above to show that $\Q$ does not have the Least Upper Bound Property. (Hint: consider a set like $\set{q \in \Q \mid q^2 \lt 2}$.)
  3. Metrics?

    For each of the following, determine if the given function is a metric on the given set.
    1. $S_A = \R$, $d_A(x, y) = \sqrt{\abs{x-y}}$
    2. $S_B = \Z$, $d_B(j, k) = \abs{j-k}^2$
    3. $S_C = \R$, $d_C(x, y) = \abs{x^3-y^3}$
    4. $S_D = \R$, $d_D(x, y) = \abs{x^4-y^4}$
    5. $S_E = \R$, $d_E(x, y) = \abs{x^5-y^3}$
    6. $S_F = \R$, $d_F(x, y) = \begin{cases}\abs{x - y} & \text{ if } xy \neq 0\\ 0 & \text{ if } x = y = 0 \\ 1 + \abs{x-y} & \text{ otherwise}\end{cases}.$
  4. Building product metrics

    Suppose that $S$ and $T$ are metric spaces with metrics $d_S$ and $d_T$ respectively. Recall $S \times T = \set{(s, t) : s \in S, t \in T}$.
    1. Take \begin{align*} d_1 : (S\times T) \times (S\times T) &\to \R_{\geq0} \\ ((s_1, t_1), (s_2, t_2)) &\mapsto d_S(s_1, s_2) + d_T(t_1, t_2). \end{align*} Show that $d_1$ is a metric on $S\times T$.
    2. Take \begin{align*} d_\infty : (S\times T) \times (S\times T) &\to \R_{\geq0} \\ ((s_1, t_1), (s_2, t_2)) &\mapsto \sup\set{d_S(s_1, s_2), d_T(t_1, t_2)}. \end{align*} Show that $d_\infty$ is a metric on $S\times T$.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.