$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: October 11th, 2019

Math 104 Assignment 5

  1. Closures and limits

    Let $E$ be a subset of a metric space $(M, d)$. Show that $x \in \overline{E}$ if and only if there is a sequence in $E$ which converges to $x$.
  2. Square roots and convergent sequences

    Suppose that $(z_a)_a$ is a sequence in $\R_{\geq0}$ with \[\lim_{s\to\infty} z_s = z.\] Show that $(\sqrt{z_n})_n$ converges to $\sqrt z$. (Hint: it may be useful to treat the case $z = 0$ separately; it may also be useful to use the fact that $(\sqrt{z_t} - \sqrt{z})(\sqrt{z_t}+\sqrt{z}) = z_t - z$.)
  3. A recursively defined sequence

    Let $(a_n)_n$ be the sequence defined as follows: $a_1 = 1$, and for $n \in \N$, $a_{n+1} = \sqrt{10+3a_n}$.

    1. Prove that for every $n \in \N$, we have $0 \leq a_n \leq a_{n+1} \leq 10^{100}$.
    2. We will see later that Part A means $(a_n)_n$ must converge (monotonic sequences converge if and only if they are bounded). Find $\lim_{n\to\infty} a_n$.
  4. Subsubsequences

    1. Suppose that $(M, d)$ is a metric space and $a \in M$. Suppose further that $(x_k)_k$ is a sequence in $M$ with the property that every subsequence of $(x_k)_k$ has a further subsequence which converges to $a$. Show that $(x_k)_k$ converges to $a$.
    2. Give an example of a sequence $(y_k)_k$ in some metric space, which does not converge but has the property that every subsequence has a further subsequence which does converge.
  5. An interesting sequence of rational numbers

    Let $(q_n)_n$ be a sequence in $\Q_{\geq0}$ defined as follows: \[q_n = \begin{cases} \frac{a}{b} & \text{ if } n = 2^a3^b \color{red}{\text{ for some }a, b \in \N} \\ 0 & \text{otherwise} \end{cases}.\] Show that for any $x \in \R_{\geq0}$ there is a subsequence of $(q_n)$ converging to $x$. (Hint: first show that every positive rational number occurs infinitely often in $(q_n)_n$, and recall that $\Q$ is dense in $\R$.)