$$
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\sq}[1]{\left[#1\right]}
\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left\langle#1\right\rangle}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\intr}{{\large\circ}}
\newcommand{\limni}[1][n]{\lim_{#1\to\infty}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
$$
Due: October 11th, 2019
Math 104 Assignment 5
Closures and limits
Let $E$ be a subset of a metric space $(M, d)$.
Show that $x \in \overline{E}$ if and only if there is a sequence in $E$ which converges to $x$.
Square roots and convergent sequences
Suppose that $(z_a)_a$ is a sequence in $\R_{\geq0}$ with \[\lim_{s\to\infty} z_s = z.\]
Show that $(\sqrt{z_n})_n$ converges to $\sqrt z$.
(Hint: it may be useful to treat the case $z = 0$ separately; it may also be useful to use the fact that $(\sqrt{z_t} - \sqrt{z})(\sqrt{z_t}+\sqrt{z}) = z_t - z$.)
A recursively defined sequence
Let $(a_n)_n$ be the sequence defined as follows: $a_1 = 1$, and for $n \in \N$, $a_{n+1} = \sqrt{10+3a_n}$.
- Prove that for every $n \in \N$, we have $0 \leq a_n \leq a_{n+1} \leq 10^{100}$.
- We will see later that Part A means $(a_n)_n$ must converge (monotonic sequences converge if and only if they are bounded).
Find $\lim_{n\to\infty} a_n$.
-
Subsubsequences
- Suppose that $(M, d)$ is a metric space and $a \in M$.
Suppose further that $(x_k)_k$ is a sequence in $M$ with the property that every subsequence of $(x_k)_k$ has a further subsequence which converges to $a$.
Show that $(x_k)_k$ converges to $a$.
- Give an example of a sequence $(y_k)_k$ in some metric space, which does not converge but has the property that every subsequence has a further subsequence which does converge.
-
An interesting sequence of rational numbers
Let $(q_n)_n$ be a sequence in $\Q_{\geq0}$ defined as follows:
\[q_n = \begin{cases} \frac{a}{b} & \text{ if } n = 2^a3^b \color{red}{\text{ for some }a, b \in \N} \\
0 & \text{otherwise} \end{cases}.\]
Show that for any $x \in \R_{\geq0}$ there is a subsequence of $(q_n)$ converging to $x$.
(Hint: first show that every positive rational number occurs infinitely often in $(q_n)_n$, and recall that $\Q$ is dense in $\R$.)