$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: October 25th, 2019

Math 104 Assignment 7

I recommend thinking about the first "Not definitions" problem below.

  1. Limits and order properties

    Clarification: in this question and the rest of the course, unless otherwise specified, the metric we take on $\R$ is the usual distance: $d(x, y) = \abs{y-x}$.

    1. Suppose that $(a_n)_n$ is a convergent sequence in $\R$, and there are $N \in \N$ and $b \in \R$ such that $a_n \leq b$ for all $n \gt N$. Prove that \[\lim_{n\to\infty} a_n \leq b.\]
    2. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$. Prove that \[\lim_{n\to\infty} a_n \leq \lim_{n \to \infty} b_n.\] (Hint: use Part A.)
    3. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$, and so that \[\lim_{n\to\infty}a_n = \lim_{n\to\infty}b_n.\] Suppose further that $(c_n)_n$ is another sequence so that $a_n \leq c_n \leq b_n$ for $n \gt N$. Prove that $(c_n)_n$ converges to the same limit as $(a_n)_n$ and $(b_n)_n$.
    4. Show by example that if $(a_n)_n$ is a convergent sequence in $\R$ and $b \in \R$ is such that $a_n \lt b$ for all $n$, it may not be the case that \[\lim_{n\to\infty} a_n \lt b.\]
    5. Show that if $(a_n)_n$ is Cauchy in some metric space $(M, d)$, then \[\lim_{n\to\infty}\paren{\lim_{k\to\infty} d(a_n, a_k)} = 0.\]
    6. Show that if $(a_n)_n$ is a sequence in some metric space $(M, d)$, then $(a_n)_n$ converges to some $x \in M$ if and only if \[\lim_{n\to\infty} d(a_n, x) = 0.\]
  2. Examining completions

    Let $(M, d)$ be a metric space. Recall that we constructed the completion of $M$ as \[\overline{M} = \set{\text{Cauchy sequences in } M} / \sim,\] where $(a_n)_n \sim (b_n)_n$ if and only if \[\lim_{n\to\infty} d(a_n, b_n) = 0.\] We then considered an isometry (i.e., distance-preserving function) $i : M \hookrightarrow \overline{M}$ given by \[i(x) = [(x)_n]_\sim.\]

    1. Show that for any $x \in M$, \[i(x) = \set{(a_n)_n \mid (a_n)_n \text{ is a sequence in } M \text{ with } \lim_{n\to\infty}a_n = x}.\]
    2. We saw that $\overline{M}$ is complete, but let's examine how limits there actually behave. Show that if $(a_n)_n$ is a Cauchy sequence in $M$, \[\lim_{n\to\infty} i(a_n) = [(a_n)_n]_\sim.\] (That is, Cauchy sequences in $M$ give sequences in $\overline{M}$ which converge to the equivalence class of the original sequence in $M$.)
  3. A characterisation of density

    Suppose that $(M, d)$ is a metric space and $X \subseteq M$. Prove that the following are equivalent:
    1. $X$ is dense in $M$, i.e., $M = \overline{X}$ (the closure of $X$);
    2. for every $a \in M$ and every $\epsilon \gt 0$ there is some $x \in X \cap B_\epsilon(a)$; and
    3. for every $a \in M$ there is some sequence in $X$ converging to $a$.
    (Warning: this is not the same as saying that every $a \in M$ is a limit point of $X$; convince yourself that these are different.)
  4. Limits of functions

    1. Suppose $(M, d)$ is a metric space, $E \subseteq M$, $f, g : E \to \R$, and $p$ is a limit point of $E$. Suppose further that for some $r \gt 0$, the set $f(E\cap B_r(p)) = \set{f(x) \mid x \in E\cap B_r(p)} \subseteq \R$ is bounded, and that \[\lim_{x\to p}g(x) = 0.\] Show that \[\lim_{x\to p} f(x)g(x) = 0.\] (Note: you should not assume that $f$ has a limit at $p$, unless you prove it from these hypotheses.)

    Suppose that $(M, d)$ and $(X, d_X)$ are metric spaces, $E \subseteq M$, $f : E \to \color{red}{X}$, and $p$ is a limit point of $E$.

    1. Show that if $f$ has a limit at $p$, then for every $\epsilon \gt 0$ there is some $r \gt 0$ so that whenever $x, y \in B_r(p) \cap E \color{red}{\setminus \set{p}}$, $d_X(f(x), f(y)) \lt \epsilon$.
    2. Suppose that for every $\epsilon \gt 0$ there is some $r \gt 0$ so that whenever $x, y \in B_r(p) \cap E$, $d_X(f(x), f(y)) \lt \epsilon$. Show that if $X$ is complete, then $f$ has a limit at $p$.
    3. Show that part (C) may fail if $X$ is not assumed to be complete.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.