Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment. They are coloured by approximate difficulty: easy/medium/hard.
Prove that if $\preceq$ is a partial order on $S$, there is an order on $S$ which extends $\preceq$: that is, an order $\preceq'$ on $S$ so that if $x, y \in S$ with $x \preceq y$, then $x \preceq' y$.
To prove this, you may assume the following:
Zorn's Lemma. Suppose that $Z$ is a set and $\preceq$ is a partial order on $Z$ with the property that every totally-ordered subset of $Z$ is bounded above in $Z$. Then $Z$ contains a maximal element. (A subset $W \subseteq Z$ is totally ordered if $\preceq$ restricted to $W$ is an order, i.e., if whenever $x, y \in W$ we have either $x \preceq y$ or $y \preceq x$. An element $x \in Z$ is maximal if whenever $y \in Z$ with $x \preceq y$, we have $y = x$.)