$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: November 20th, 2020

Math 104 Assignment 11

  1. A pathological function

    Let $f : [0,1] \to \R$ be defined as follows: \[ f(x) = \begin{cases} 0 & \text{ if } x \notin \Q \\ 1 & \text{ if } x = 0 \\ \frac1q & \text{ if } x = \frac{p}{q} \text{ with } p \in \Z, q \in \N, \text{ and } p, q \text{ have no common factor}.\end{cases}\] (For example, $f(0) = f(1) = 1$, $f(1/2) = 1/2$, $f(1/4) = f(3/4) = 1/4$.)

    Prove that $f$ is integrable, and find its integral.

  2. Integrals are insensitive to individual points

    1. This week, we will see that continuous functions are integrable. Use this to prove that if $f : [a, b] \to \R$ is bounded and continuous except at finitely many points, then $f$ is integrable.
    2. Suppose that $f : [a, b] \to \R$ is integrable, and $g : [a, b] \to \R$ is such that $f(x) = g(x)$ for all but finitely many $x \in [a, b]$. Show that $g$ is integrable, and \[\int_a^b f(x)\,dx = \int_a^b g(x)\,dx.\]
  3. Properties of integrals

    1. Let $f : [0, 1] \to \R_{\geq 0}$ be continuous. Show that $f = 0$ (that is, $f$ is the constant function $0$) if and only if \[\int_0^1 f(t)\,dt = 0.\]
    2. Show that if the assumption of continuity is dropped in Part A, it is no longer true.
    3. Suppose that $f, g : [a, b] \to \R$ are such that $f(t) \leq g(t)$ for all $t \in \R$. Show that $U(f) \leq U(g)$. (Note that, as a consequence, if $f$ and $g$ are integrable then $\int_a^b f(t)\,dt \leq \int_a^b g(t)\,dt$.)
    4. Suppose that $f : [a, b] \to \R$ is monotonically increasing, i.e., if $a \leq t \lt s \leq b$ then $f(t) \leq f(s)$. Prove that $f$ is integrable.
  4. An integral of integrals

    Suppose that $f : [0, 1] \times [0, 1] \to \R$ is continuous. Notice that for each $y_0 \in [0, 1]$, we have a function \begin{align*} [0, 1] &\longrightarrow \R \\ x &\longmapsto f(x, y_0). \end{align*} Each of these functions is continuous, and so integrable; this can be checked directly from the definition, or by using the sequential characterisation of continuity.

    1. Prove that for any $\epsilon \gt 0$ there is a $\delta \gt 0$ so that if $\abs{y - z} \lt \delta$, we have \[ \sup_{x \in [0, 1]} \abs{f(x, y) - f(x, z)} \lt \epsilon. \]
    2. Show that the function \begin{align*} I: [0, 1] &\longrightarrow \R \\ y &\longmapsto \int_0^1 f(x, y) \,dx \end{align*} is continuous, and therefore integrable.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.