$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: December 4th, 2020

Math 104 Assignment 12

  1. Uniform convergence and boundedness

    Suppose that $X$ is a set and $(f_n)_n$ is a sequence of functions $X \to \R$, so that each $f_n$ is bounded. Suppose further that $(f_n)_n$ converges uniformly to some $f : X \to \R$. Show that $(f_n)_n$ is uniformly bounded: that is, there is some $T \in \R$ so that for all $x \in X$ and all $n \in \N$, \[\abs{f_n(x)} \leq T.\]

  2. Uniform convergence and sums

    In this problem, we will make the assumption that sequences are indexed beginning at $0$ rather than at $1$.

    1. Suppose that $(a_k)_k$ is a sequence in $\R$. For each $n \in \N$, set \[s_n = \sum_{k=0}^n a_k.\] If $(s_n)_n$ converges, we write $\sum_{k=0}^\infty a_k = \lim_{n\to\infty}s_n.$ Show that the sequence $(s_n)_n$ converges if and only if for every $\epsilon \gt 0$ there is some $N \in \N$ so that for any $n, m \in \N$ with $N \lt n \lt m$, \[\abs{\sum_{k=n}^m a_k} \lt \epsilon.\]
    2. Suppose now that $X$ is a set, and $(f_k)_k$ is a sequence of function $X \to \R$. For each $n \in \N$, set \[g_n = \sum_{k=0}^n f_k.\] Show that the sequence $(g_n)_n$ converges uniformly if and only if for every $\epsilon \gt 0$ there is some $N \in \N$ so that for any $n, m \in \N$ with $N \lt n \lt m$, \[\sup_{x \in X}\abs{\sum_{k=n}^m f_k(x)} \lt \epsilon.\] In this case, we say that $\sum_{k=0}^\infty f_k$ converges uniformly, and use this to denote the limit of $(g_n)_n$.
    3. Suppose that $(B_k)_k$ is a sequence in $\R_{\geq 0}$ so that \[\sum_{k=0}^\infty B_k\] converges, and $(f_k)_k$ is a sequence of functions $X \to \R$ so that $f_k$ is bounded by $B_k$: that is, $\abs{f_k(x)} \leq B_k$ for all $x \in X$. Use parts A and B to show that \[\sum_{k=0}^\infty f_k\] converges uniformly.
    4. Show that if $\abs{r} \lt 1$, then \[\sum_{k=0}^\infty r^k = \frac1{1-r}.\] (Hint: first notice that $(1-r)(1+r+r^2+\cdots+r^n) = 1-r^{n+1}$.)
    5. Suppose that $(a_k)_k$ is a sequence in $\R$ so that $\limsup_{k\to\infty} \abs{a_k}^{1/k} \lt 1$. Prove that \[\sum_{k=0}^\infty a_k x^k\] converges uniformly on $[-1, 1]$. (Here, "$a_kx^k$" is being used to mean the function $x \mapsto a_kx^k$.)
    6. A function of the form above is called a power series. Since a power series is the uniform limit of polynomials—which are continuous—it is continuous.

  3. A poorly-behaved function

    Let $C : \R \to [-1, 1]$ be a continuous function with the properties that $C(2k) = 1$ and $C(2k+1) = -1$ for every $k \in \Z$, and that $\abs{C(x)-C(y)} \leq 4\abs{x-y}$ for all $x, y \in \R$.

    1. Prove that \[\sum_{{\color{red}j}=0}^\infty \paren{\frac34}^j C(9^j x)\] converges uniformly to some function $W : \R \to \R$.
    2. Let $n \in \N$ and $a \in \Z$. Show that \[\abs{W\paren{\frac{a+1}{9^n}} - W\paren{\frac{a}{9^n}}} \gt \paren{\frac34}^n.\] (Hint: the analysis here requires getting your hands dirty, and you'll probably need to make use of both 2D and its hint. Break the sum up into two pieces, and show that the tail is large enough to overcome the first piece.)
    3. Conclude that $W$ is continuous, but not differentiable at any point in $\R$.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment. They are coloured by approximate difficulty: easy/medium/hard.