$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: September 18th, 2020

Math 104 Assignment 3

  1. Warm-up

    Prove the following useful fact, which you may use later on this assignment. You do not need to submit this problem.

    Suppose that $M$ is a set and $f : M \times M \to \R_{\geq0}$ is such that for all $x, y \in M$, $f(x, y) = 0$ if and only if $x = y$, and $f(x, y) = f(y, x)$. Prove that if $x, y \in M$, we have \begin{align*} f(x, x) &\leq f(x, y) + f(y, x) \\ f(x, y) &\leq f(x, y) + f(y, y) \\ f(x, y) &\leq f(x, x) + f(x, y) \\ f(x, x) &\leq f(x, x) + f(x, x). \end{align*} Consequently, to show $f$ is a metric, it suffices to check that the triangle inequality holds for triples of distinct points.

  2. Metrics?

    For each of the following, determine (with proof) if the given function is a metric on the given set.
    1. $S_A = \R$, $d_A(x, y) = \sqrt{\abs{x-y}}$
    2. $S_B = \Z$, $d_B(j, k) = \abs{j-k}^2$
    3. $S_C = \R$, $d_C(x, y) = \abs{x^5-y^5}$
    4. $S_D = \R$, $d_D(x, y) = \abs{x^4-y^4}$
    5. $S_E = \R$, $d_E(x, y) = \abs{x^5-y^3}$
    6. $S_F = \R$, $d_F(x, y) = \begin{cases}\abs{x - y} & \text{ if } xy \neq 0\\ 0 & \text{ if } x = y = 0 \\ 1 + \abs{x-y} & \text{ otherwise}\end{cases}.$
    7. Let $S_G = \set{f : \N \to \set{0, 1}}$ be the set of functions from $\N$ to $\set{0,1}$; note that an element of $S_G$ can be thought of as an infinitely long binary string. (E.g., the function $f(n)$ which is $1$ if $n \leq 3$ and $0$ otherwise corresponds to the string $11100000...$; the function $g(n)$ which is $0$ if $n$ is even and $1$ if $n$ is odd corresponds to the string $1010101010101...$.) If $f, g \in S_G$ are not equal, let $n_0 = \min\set{n \in \N \mid f(n) \neq g(n)}$, and set $d_G(f, g) = 2^{-n_0}$; if $f = g$, set $d_G(f, g) = 0$ instead.
  3. Pullbacks of metrics along maps

    Recall that a function $f : X \to M$ is said to be injective or one-to-one if for every $x, y \in X$, $f(x) = f(y)$ implies $x = y$.

    Suppose $(M, d)$ is a metric space, $X$ is a set, and $f : X \to M$. Define \begin{align*} d_f : X\times X &\longrightarrow \R_{\geq0} \\ (x, y) &\longmapsto d(f(x), f(y)). \end{align*} Prove that $d_f$ is a metric on $X$ if and only if $f$ is injective.

  4. Building product metrics

    Suppose that $S$ and $T$ are metric spaces with metrics $d_S$ and $d_T$ respectively. Recall $S \times T = \set{(s, t) : s \in S, t \in T}$.
    1. Take \begin{align*} d_1 : (S\times T) \times (S\times T) &\to \R_{\geq0} \\ ((s_1, t_1), (s_2, t_2)) &\mapsto d_S(s_1, s_2) + d_T(t_1, t_2). \end{align*} Show that $d_1$ is a metric on $S\times T$.
    2. Take \begin{align*} d_\infty : (S\times T) \times (S\times T) &\to \R_{\geq0} \\ ((s_1, t_1), (s_2, t_2)) &\mapsto \max\set{d_S(s_1, s_2), d_T(t_1, t_2)}. \end{align*} Show that $d_\infty$ is a metric on $S\times T$.
  5. Some basic open/closed set problems

    Suppose $(M, d)$ is a metric space.
    1. Suppose $x \in M$. Prove that $\set{x}$ is closed.
    2. Suppose $x, y \in M$ are such that every open set containing $x$ also contains $y$. Prove that $x = y$.
  6. De Morgan's Laws

    Let $M$ be a set. Given a subset $E \subseteq M$, we denote by $E^c$ the complement of $E$ in $M$: $E^c = M \setminus E = \set{x \in M \mid x \notin E}$. Note that this notation only makes sense when $M$ is clear.

    Verify the following identities, where $(E_\alpha)$ is a collection of subsets of $M$.

    1. \[\paren{\bigcap_{\alpha} E_\alpha}^c = \bigcup_\alpha E_\alpha^c\]
    2. \[\paren{\bigcup_{\alpha} E_\alpha}^c = \bigcap_\alpha E_\alpha^c\]

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.