$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: October 2nd, 2020

Math 104 Assignment 5

  1. Intersections of non-compact sets can be badly behaved

    We showed in lecture that if $\set{K_\alpha}$ is a collection of compact subsets of $M$ so that the interesction of every finite subcollection is non-empty, then the intersection of all the $K_\alpha$ is non-empty.

    1. Show that this may fail if the $K_\alpha$ are merely assumed to be closed.
    2. Show that this may fail if the $K_\alpha$ are merely assumed to be bounded.
    3. Suppose that $\set{K_\alpha \mid \alpha\in\mathcal{I}}$ is a collection of compact subsets of $M$ so that the intersection $K_\alpha\cap K_\beta$ is non-empty for each $\alpha, \beta \in \mathcal{I}$. Show that it may nonetheless be the case that \[\bigcap_\alpha K_\alpha = \emptyset.\]
  2. Compact sets are bounded

    Prove that compact sets are bounded.
  3. Open sets in the plane

    Recall that $d_1(\mathbf{x}, \mathbf y) = \abs{x_1-y_1}+\abs{x_2-y_2}$, $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\abs{x_1-y_1}^2 + \abs{x_2-y_2}^2}$, and $d_\infty(\mathbf x, \mathbf y) = \max(\abs{x_1-y_1}, \abs{x_2-y_2})$ are all metrics on $\R^2$.

    Let $r \gt 0$ and $\mathbf x \in \R^2$.

    1. Prove that there is some $s \gt 0$ so that \[B_s^{d_1}(\mathbf x) \subseteq B_r^{d_2}(\mathbf x).\]
    2. Prove that there is some $s \gt 0$ so that \[B_s^{d_2}(\mathbf x) \subseteq B_r^{d_\infty}(\mathbf x).\]
    3. Prove that there is some $s \gt 0$ so that \[B_s^{d_\infty}(\mathbf x) \subseteq B_r^{d_1}(\mathbf x).\]
    4. Prove that if $G \subseteq \R^2$ is open with respect to any of the three metrics, then it is open with respect to all of them.

    (Note that there is no reason to find the best $s$ for a given $r$, just any one that works. It may be interesting to think about what the best is, though. Consider also what this says about drawing diamonds inside circles inside squares.)

  4. Products of compact sets

    Suppose that $(X_1, d_1), (X_2, d_2)$ are compact metric spaces. Let $K = X_1 \times X_2$ be equipped with the metric $$d\paren{(x_1, x_2), (y_1, y_2)} = \sqrt{d_1(x_1, y_1)^2 + d_2(x_2, y_2)^2}.$$
    1. Suppose $G \subseteq K$ is open and $(x_1, x_2) \in G$. Show that for some $r \gt 0$, $$B_r^{X_1}(x_1) \times B_r^{X_2}(x_2) = \set{(y_1, y_2) \in K \middle\vert d_i(x_i, y_i) \lt r \text{ for } i = 1, 2} \subseteq G.$$
    2. Let $\mathscr{U}$ be an open cover of $K$, fix $x \in X_1$, and write $$\mathscr{U}_x = \set{ G \subseteq X_2 \middle\vert \begin{aligned} G \text{ is open, and } \exists r \gt 0 \text{ and } \\ E \in \mathscr{U} \text{ so that } B_r^{X_1}(x) \times G \subseteq E \end{aligned} }.$$ Prove that $\mathscr{U}_x$ is an open cover of $X_2$.
    3. Prove that there is $r_x \gt 0$ and a finite set $$\mathscr{V}_x \subseteq \mathscr{U}$$ which is an open cover of $B_{r_x}(x) \times X_2 \subseteq K$.
    4. Prove that $K$ is compact. (Hint: $\set{B_{r_x}(x) \mid x \in X_1}$ covers $X_1$.)
    5. Prove that if $(X_1, d_1), (X_2, d_2), \ldots, (X_n, d_n)$ are compact metric spaces, then so is $X_1 \times X_2 \times \cdots \times X_n$ when equipped with the metric $$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n d_i(x_i, y_i)^2},$$ where $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.