$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
$$ \DeclareMathOperator*{\rls}{Rlimsup } \DeclareMathOperator*{\rli}{Rliminf } $$
Due: October 16th, 2020

Math 104 Assignment 7

I recommend thinking about the "Not definitions" problem below.

  1. Limits and order properties

    1. Suppose that $(a_n)_n$ is a convergent sequence in $\R$, and there are $N \in \N$ and $b \in \R$ such that $a_n \leq b$ for all $n \gt N$. Prove that \[\lim_{n\to\infty} a_n \leq b.\]
    2. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$. Prove that \[\lim_{n\to\infty} a_n \leq \lim_{n \to \infty} b_n.\] (Hint: use Part A.)
    3. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$, and so that \[\lim_{n\to\infty}a_n = \lim_{n\to\infty}b_n.\] Suppose further that $(c_n)_n$ is another sequence so that $a_n \leq c_n \leq b_n$ for $n \gt N$. Prove that $(c_n)_n$ converges to the same limit as $(a_n)_n$ and $(b_n)_n$.
    4. Show by example that if $(a_n)_n$ is a convergent sequence in $\R$ and $b \in \R$ is such that $a_n \lt b$ for all $n$, it may not be the case that \[\lim_{n\to\infty} a_n \lt b.\]
    5. Show that if $(a_n)_n$ is Cauchy in some metric space $(M, d)$, then \[\lim_{n\to\infty}\paren{\lim_{k\to\infty} d(a_n, a_k)} = 0.\]
  2. Properties of limits superior and inferior

    Recall that the limit superior of a sequence of real numbers $(x_n)_n$ is defined to be \[ \limsup_{n\to\infty} x_n = \begin{cases} \infty & \text{ if } (x_n)_n \text{ is not bounded above}\\ -\infty & \text{ if } (x_n)_n \text{ is bounded above but } \paren{ \sup\set{x_k \mid k \gt n} }_n \text{ is not bounded below}\\ \displaystyle\lim_{n\to\infty} \sup\set{x_k \mid k \gt n} & \text{ otherwise}. \end{cases} \]

    1. Verify that if $(x_n)_n$ is bounded above, then the sequence $\paren{ \sup\set{x_k \mid k \gt n} }_n$ is monotonic.
    2. Prove that for every $y \in \R$ with $y \gt \limsup_{n\to\infty} x_n$, there are only finitely many $n \in \N$ for which $x_n \gt y$.
    3. Prove that for every $y \in \R$ with $y \lt \limsup_{n\to\infty} x_n$, there are infinitely many $n \in \N$ for which $x_n \gt y$.
    4. Prove that if $(x_n)_n$ and $(y_n)_n$ are sequences in $\R$, then \[\limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n \geq \limsup_{n\to\infty} x_n + y_n,\] provided that all the limits superior involved are finite.
    5. Show by example that the above inequality is not always an equality.

    Be sure to consider the possibilities that $\limsup_{n\to\infty} x_n$ is $\pm\infty$ in B and C. Notice also that B and C together give another characterization of the limit superior: it is the unique element of $\R \cup \set{\infty, -\infty}$ with both properties.

  3. Limits of functions

    1. Suppose $(M, d)$ is a metric space, $E \subseteq M$, $f, g : E \to \R$, and $p$ is a limit point of $E$. Suppose further that for some $r \gt 0$, the set $f(E\cap B_r(p)) = \set{f(x) \mid x \in E\cap B_r(p)} \subseteq \R$ is bounded, and that \[\lim_{x\to p}g(x) = 0.\] Show that \[\lim_{x\to p} f(x)g(x) = 0.\] (Note: you should not assume that $f$ has a limit at $p$, unless you prove it from these hypotheses.)

    Suppose that $(M, d)$ and $(X, d_X)$ are metric spaces, $E \subseteq M$, $f : E \to X$, and $p$ is a limit point of $E$.

    1. Show that if $f$ has a limit at $p$, then for every $\epsilon \gt 0$ there is some $r \gt 0$ so that whenever $x, y \in B_r(p) \cap E \setminus \set{p}$, $d_X(f(x), f(y)) \lt \epsilon$.
    2. Suppose that for every $\epsilon \gt 0$ there is some $r \gt 0$ so that whenever $x, y \in B_r(p) \cap E$, $d_X(f(x), f(y)) \lt \epsilon$. Show that if $X$ is complete, then $f$ has a limit at $p$.
    3. Show that part (C) may fail if $X$ is not assumed to be complete.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment. They are coloured by approximate difficulty: easy/medium/hard.