$$
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\sq}[1]{\left[#1\right]}
\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left\langle#1\right\rangle}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\intr}{{\large\circ}}
\newcommand{\limni}[1][n]{\lim_{#1\to\infty}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
$$
Office hours:
- Mondays 18:00-19:00
- Wednesdays 14:00-16:00
GSI:
Nima Moini
- Mondays 10:00-14:00
- Tuesdays 10:00-14:00
- Wednesdays 10:00-12:00
-
Suppose that $(x_n)_n$ is a sequence in a metric space $(M, d)$.
Which of the following is the condition that $(x_n)_n$ does not converge?
- There is some $L \in M$ and some $\delta \gt 0$ so that for any $N$ there is $n \gt N$ with $d(x_n, L) \gt \delta$.
- If $U \subseteq M$ is an open set, for any $N$ there is some $n \gt N$ so that $x_n \notin U$.
- For any $L \in M$ and any $\epsilon \gt 0$ there is some $N$ so that for every $n \gt N$, $d(x_n, L) \gt \epsilon$.
- For any $L \in M$ there is some $\delta \gt 0$ so that for any $N$ there is $n \gt N$ with $d(x_n, L) \gt \delta$.
-
Let $X$ be a set equipped with the discrete metric.
Suppose $f : X \to \R$.
What condition is necessary for $f$ to be continuous?
- $f$ must be constant.
- No further condition is needed.
- We must have $\lim_{t \to x} f(t) = f(x)$ for every $x \in X$.
- $f$ must be bounded, in the sense that $f(X) = \set{f(t) \mid t \in X}$ is a bounded subset of $\R$.
-
Let $X = \R\setminus\set0$ with the metric inherited from $\R$.
Define $f : X \to \R$ by $f(t) = \frac{t}{\abs{t}}$.
Is $f$ continuous?
- Yes.
- No.
-
Let $g : \R\to\R$ be defined by $$g(t) = \begin{cases} 1 &\text{ if } t \in \Q \\ 0 &\text{ otherwise.}\end{cases}$$
Then $g$ is continuous...
- ...on $\Q$ but not on $\R\setminus\Q$.
- ...everywhere.
- ...nowhere.
- ...at $0$, but nowhere else.
-
Let $h : \R\to\R$ be defined by $$h(t) = \begin{cases} t &\text{ if } t \in \Q \\ 0 &\text{ otherwise.}\end{cases}$$
Then $h$ is continuous...
- ...on $\R\setminus\Q$ but not on $\Q$.
- ...everywhere.
- ...nowhere.
- ...at $0$, but nowhere else.