$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: April 16th, 2020

Math 185 Assignment 10

$$\newcommand{\res}{\operatorname{res}}$$
  1. Laurent series

    Recall from Assignment 7 that if $0 \lt r \lt R \lt \infty$ and $f$ is holomorphic on (an open region containing) $\overline{A_{r, R}(0)}$ then for $z \in A_{r, R}(0)$ we have \[f(z) = \frac1{2\pi i}\paren{\int_{\partial B_R(z_0)} \frac{f(w)}{w-z}\,dw - \int_{\partial B_r(z_0)} \frac{f(w)}{w-z}\,dw}.\]

    1. Use the generalized Cauchy Integral Formula to produce a much simpler proof of this fact.
    2. Let $r \gt 0$ and $C_r = \partial B_r(0)$ the circle centred at $0$ of radius $r$. Suppose that $f$ is holomorphic on some open set containing $C_r$. Show that \[g_r : z \longmapsto \frac1{2\pi i}\int_{C_r} \frac{f(w)}{w-z}\,dw\] is holomorphic on $\C \setminus C_r$, with a removable singularity at $\infty$ so that $g(\infty) = 0$.
    3. The right-hand side of the identity \[f(z) = \frac1{2\pi i}\paren{\int_{\partial B_R(z_0)} \frac{f(w)}{w-z}\,dw - \int_{\partial B_r(z_0)} \frac{f(w)}{w-z}\,dw}\] makes sense for any $z \in \C \setminus (C_r \cup C_R)$. Does it agree with $f$ outside of $\overline{A_{r, R}(0)}$?
    4. Use the power series representation of $g_r(1/z)$ to show that there are coefficients $(a_n)_{n\lt0}$ so that for $|z|\gt r$, \[g_r(z) = \sum_{n=-\infty}^{-1} a_nz^n,\] and the convergence is uniform on compact subsets of $\C\setminus\overline{B_r(0)}$.
    5. Conclude that if $f$ is holomorphic on an open set containing $\overline{A_{r, R}(0)}$ then there are coefficients $(a_n)_{n\in\Z}$ so that \[f(z) = \sum_{n=-\infty}^{\infty} a_nz^n\] uniformly on compact subsets of $A_{r, R}(0)$.
    6. Suppose now that $f$ is holomorphic on an open set containing $\overline{A_{r, R}(z_0)}$. Show that there are coefficients $(a_n)_{n\in\Z}$ so that \[f(z) = \sum_{n=-\infty}^{\infty} a_n(z-z_0)^n\] uniformly on compact subsets of $A_{r, R}(z_0)$.
    7. For $|z| \neq 1$, compute \[\int_{C_1} \frac{1}{w(w-z)}\,dw.\]
  2. Obstructions to primitives

    Suppose $\Omega_1 \subseteq \C$ is open and simply connected, $s_1, \ldots, s_n \in \Omega_1$ are distinct, $S = \set{s_1, \ldots, s_n}$, and $\Omega = \Omega_1 \setminus S$.

    1. Let $f : \Omega \to \C$ be holomorphic. Show that $f$ admits a primitive if and only if for every $s \in S$, $\res_s(f) = 0$.
    2. Show that there are holomorphic functions $\varphi_1, \ldots, \varphi_n : \Omega \to \C$ so that for any $f : \Omega \to \C$ holomorphic, there are coefficients $\alpha_1, \ldots, \alpha_n \in \C$ so that \[f + \alpha_1\varphi_1 + \alpha_2\varphi_2 + \ldots + \alpha_n\varphi_n\] admits a primitive.

      (What you have proven is that if $\mathcal{H}_\Omega$ is the vector space of functions holomorphic on $\Omega$ and $\mathcal{H}^0_{\Omega}$ is the vector space of functions on $\Omega$ which admit primitives, then \[\dim_\C\paren{\mathcal H_\Omega / \mathcal H^0_\Omega} = n\text{.)}\]