$$
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\sq}[1]{\left[#1\right]}
\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left\langle#1\right\rangle}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\intr}{{\large\circ}}
\newcommand{\limni}[1][n]{\lim_{#1\to\infty}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
$$
Due: April 23rd, 2020
Math 185 Assignment 11
$$
\newcommand{\res}{\operatorname{res}}
\newcommand{\H}{\mathbb{H}}
$$
-
Functions with non-zero derivative
-
Give an example of open sets $U, V \subseteq \C$ and a function $f : U \to V$ so that $f'(z) \neq 0$ for all $z \in U$, $f(U) = V$, but $f$ is not injective.
-
Suppose $U, V \subseteq \C$ are open, and $f : U \to V$ is holomorphic.
We say $f$ is a local bijection if for every $z_0 \in U$ there is $\delta \gt 0$ so that
\[f|_{B_\delta(z_0)} : B_\delta(z_0) \longrightarrow f(B_\delta(z_0))\]
is a bijection.
Prove that $f$ is a local bijection if and only if $f'(z) \neq 0$ for all $z \in U$.
-
Boundary values on the upper half-plane
Suppose $f : \H \to \C$ is holomorphic and extends continuously to $\H \cup \R \cup \set{\infty}$.
Show that if for all $x$ in some interval $[a, b] \subseteq \R$ (with $a \lt b$) we have $f(x) = 0$ then $f \equiv 0$. (Hint: you may find a result from a previous assignment to be useful here.)
As a bonus, determine if the same holds if we merely assume that $f$ extends continuously to $\H \cup [a, b]$, not necessarily all of $\H\cup\R\cup\set{\infty}$.
-
Simple connectivity
Suppose that $U, V \subseteq \C$ are conformally equivalent.
Prove that $U$ is simply connected if and only if $V$ is.
-
The plane, the disc, and the sphere are distinct
Recall that a function $f$ defined on $\C_\infty$ is holomorphic if it is holomorphic at every point in $\C$ and has a removable singularity at $\infty$.
Prove that no two of $\C$, $\C_\infty$, and $\D$ are conformally equivalent.