$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: April 23rd, 2020

Math 185 Assignment 11

$$ \newcommand{\res}{\operatorname{res}} \newcommand{\H}{\mathbb{H}} $$
  1. Functions with non-zero derivative

    1. Give an example of open sets $U, V \subseteq \C$ and a function $f : U \to V$ so that $f'(z) \neq 0$ for all $z \in U$, $f(U) = V$, but $f$ is not injective.
    2. Suppose $U, V \subseteq \C$ are open, and $f : U \to V$ is holomorphic. We say $f$ is a local bijection if for every $z_0 \in U$ there is $\delta \gt 0$ so that \[f|_{B_\delta(z_0)} : B_\delta(z_0) \longrightarrow f(B_\delta(z_0))\] is a bijection.

      Prove that $f$ is a local bijection if and only if $f'(z) \neq 0$ for all $z \in U$.

  2. Boundary values on the upper half-plane

    Suppose $f : \H \to \C$ is holomorphic and extends continuously to $\H \cup \R \cup \set{\infty}$. Show that if for all $x$ in some interval $[a, b] \subseteq \R$ (with $a \lt b$) we have $f(x) = 0$ then $f \equiv 0$. (Hint: you may find a result from a previous assignment to be useful here.)

    As a bonus, determine if the same holds if we merely assume that $f$ extends continuously to $\H \cup [a, b]$, not necessarily all of $\H\cup\R\cup\set{\infty}$.

  3. Simple connectivity

    Suppose that $U, V \subseteq \C$ are conformally equivalent. Prove that $U$ is simply connected if and only if $V$ is.
  4. The plane, the disc, and the sphere are distinct

    Recall that a function $f$ defined on $\C_\infty$ is holomorphic if it is holomorphic at every point in $\C$ and has a removable singularity at $\infty$. Prove that no two of $\C$, $\C_\infty$, and $\D$ are conformally equivalent.