The Riemann sphere
Recall that we defined the Riemann sphere as
\[\S := \set{(\alpha, \beta, \gamma) \in \R^3 \mid \alpha^2+\beta^2+\gamma^2=1}.\]
We identified $\S$ with the "infinitied" complex plane $\C_\infty$ by
\begin{align*}
S &\longrightarrow \C_\infty\\
(\alpha, \beta, \gamma) &\longmapsto \begin{cases} \infty & \text{ if } \gamma = 1 \\ \frac{\alpha+i\beta}{1-\gamma} & \text{ otherwise.}\end{cases}
\end{align*}
Here the inverse mapping is given by
\[
x+iy \longmapsto \paren{\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, 1-\frac{2}{x^2+y^2+1}}.
\]
- Describe the map $\S \to \S$ which corresponds to $z \mapsto iz$.
- Describe the map $\S \to \S$ which corresponds to $z \mapsto \bar z$.
- Describe the map $\C_\infty \to \C_\infty$ which corresponds to sending each point $p \in \S$ to its antipode, $-p$.
(An example of the level of detail desired: the map $z \mapsto z^{-1}$ corresponds to a rotation by angle $\pi$ about the line through $1$ and $-1$ (i.e., through $(1, 0, 0)$ and $(-1, 0, 0)$). Of course, some justification of this claim would be required.)