$$
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\norm}[1]{\left\|#1\right\|}
\newcommand{\paren}[1]{\left(#1\right)}
\newcommand{\sq}[1]{\left[#1\right]}
\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left\langle#1\right\rangle}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\T}{\mathbb{T}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\intr}{{\large\circ}}
\newcommand{\limni}[1][n]{\lim_{#1\to\infty}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bH}{\mathbb{H}}
\newcommand{\bI}{\mathbb{I}}
\newcommand{\bJ}{\mathbb{J}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bL}{\mathbb{L}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bQ}{\mathbb{Q}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\bU}{\mathbb{U}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bW}{\mathbb{W}}
\newcommand{\bX}{\mathbb{X}}
\newcommand{\bY}{\mathbb{Y}}
\newcommand{\bZ}{\mathbb{Z}}
$$
Due: March 19th, 2020
Math 185 Assignment 7
At the beginning of lecture on Tuesday, we will have the following definition:
Suppose that $\Omega \subseteq \C$ is open and $\gamma_0, \gamma_1 \subset \Omega$ are closed curves (though not necessarily from the same base point).
A homotopy of (closed curves) $\gamma_0$ and $\gamma_1$ in $\Omega$ is a continuous function $h : [0, 1]\times[0, 1] \to \Omega$ so that for fixed $s$, $t\mapsto h(s, t)$ is a closed parameterized curve, and is a parameterization of $\gamma_0$ if $s = 0$ or $\gamma_1$ if $s = 1$.
Once again, this is a notion of $\gamma_0$ being able to be "smoothly deformed" into $\gamma_1$, but now we are allowed to move the endpoints of the curve.
-
Homotopy is an equivalence relation
Let $\Omega \subseteq \C$.
Given closed curves $\gamma_0, \gamma_1$ in $\Omega$, let us write $\gamma_0 \sim_\Omega \gamma_1$ if they are homotopic in $\Omega$.
Prove that $\sim_\Omega$ is an equivalence relation. That is, for any $\gamma_0, \gamma_1, \gamma_2$ closed curves in $\Omega$: $\gamma_0 \sim_\Omega \gamma_0$; $\gamma_0\sim_\Omega \gamma_1$ if and only if $\gamma_1\sim_\Omega\gamma_0$; and if $\gamma_0 \sim_\Omega \gamma_1$ and $\gamma_1\sim_\Omega\gamma_2$ then $\gamma_0\sim_\Omega\gamma_2$.
(In fact, homotopy of (not necessarily closed) curves is also an equivalence relation, but showing this is essentially the same argument.)
-
Invariance of integrals along homotopic closed curves
Suppose that Ω is open, that $\gamma_0, \gamma_1$ are closed curves homotopic in $\Omega$, and $h : [0, 1]\times [0, 1] \to \Omega$ is a homotopy between them.
Let $\sigma$ be the curve parameterized by
\begin{align*}
[0, 1] &\longrightarrow \Omega \\ s & \longmapsto h(s, 0) = h(s, 1).
\end{align*}
- Show that $\gamma_0$ and $\sigma\,.\gamma_1\,.\sigma^-$ are homotopic as curves (rather than as closed curves).
In particular, show that there is a homotopy between them which fixes the endpoints of the curves in question.
- Conclude that if $\gamma_0, \gamma_1$ are homotopic closed curves in $\Omega$ and $f : \Omega \to \C$ is holomorphic, then
\[\int_{\gamma_0}f(z)\,dz = \int_{\gamma_1}f(z)\,dz.\]
-
Homotopies in starlike regions
Suppose that $\Omega \subseteq \C$ is open and starlike about $z$.
Let $\gamma$ be a path in $\Omega$ from $w_0$ to $w_1$.
Show that $\gamma$ is homotopic to $[w_0, z]\,.[z, w_1]$.
Conclude that any two paths in $\Omega$ from $w_0$ to $w_1$ are homotopic to each other.
-
Annuli
Suppose $0 \leq r \lt R \leq \infty$ and $z_0 \in \C$.
We denote by $A_{r, R}(z_0)$ the annulus of inner radius $r$ and outer radius $R$ centred at $z_0$:
\[A_{r, R}(z_0) := \set{z \in \C \mid r \lt \abs{z-z_0} \lt R}.\]
Suppose that $\Omega \subseteq \C$ is open, $0 \lt r \lt R \lt \infty$, $z_0 \in \C$, and $\overline{A_{r, R}(z_0)} \subset \Omega$.
-
Show that $\partial B_{r}(z_0)$ and $\partial B_R(z_0)$ are homotopic in $\Omega$.
-
Suppose that $f : \Omega \to \C$ is holomorphic.
Show that for $z \in A_{r, R}$, we have
\[f(z) = \frac1{2\pi i}\paren{\int_{\partial B_R(z_0)} \frac{f(w)}{w-z}\,dw - \int_{\partial B_r(z_0)} \frac{f(w)}{w-z}\,dw}.\]