$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: April 9th, 2020

Math 185 Assignment 9

$$\newcommand{\res}{\operatorname{res}}$$
  1. Maximum modulus problems

    1. Suppose that $f, g : \overline{B_1(0)} \to \C$ are holomorphic on $B_1(0)$ and continuous, with $f(e^{it}) = g(e^{it})$ for all $t \in \R$. Show that $f \equiv g$.
    2. Suppose that $f : \overline{B_1(0)} \to \C$ is holomorphic on $B_1(0)$ and continuous, and that for some $\theta \gt 0$, $f(e^{it}) = 0$ for all $t \in [0, \theta]$. Show that $f \equiv 0$. (Hint: consider a product of functions of the form $z \mapsto f(\zeta z)$ with $|\zeta| = 1$.)

      Notice that this allows us to strengthen Part A: the result there still holds even if $f$ and $g$ agree merely on some arc of the circle.

  2. Primitives on domains without simple connectivity

    Suppose that $\Omega \subseteq \C$ is a domain, but not necessarily simply connected, and that $f : \Omega \to \C$ is holomorphic. Show that $f$ admits a primitive on $\Omega$ if and only if for every closed curve $\gamma$ in $\Omega$, \[\int_\gamma f(w)\,dw = 0.\]

  3. Some branches of logarithm

    1. Suppose that $\gamma$ is a curve in $\C$. Show that there is a unique unbounded connected component of $\C\setminus\gamma$. (Recall that for open sets $U \subseteq \Omega \subseteq \C$, $U$ is a connected component of $\Omega$ if and only if $U$ is non-empty and connected, and $U^c\cap \Omega$ is open.)

      It turns out to also be true that $\C\setminus\gamma$ has a unique bounded component whenever $\gamma$ is simple and closed, but this is much harder to show.

    2. Let $\alpha : [0, \infty) \to \C$ be continuous and injective (i.e., one-to-one), with $\alpha(0) = 0$ and $\lim_{t\to\infty}\abs{\alpha(t)} = \infty$. Set $V_\alpha = \C\setminus\alpha([0, \infty)).$

      Show that for any closed curve $\gamma$ in $V_\alpha$, \[\int_\gamma \frac{dz}z = 0.\] Conclude that $V_\alpha$ admits a branch of logarithm. (Hint: You may wish to apply homotopy invariance on $\C^\times$ rather than $V_\alpha$.)

      It turns out showing that $V_\alpha$ is connected is trickier than I realized. Show instead that the unbounded component $C$ of $V_\alpha$ admits a function $L : C \to \C$ such that $e^{L(z)} = z$ for all $z \in C$. As a bonus, show that $V_\alpha$ is connected and simply connected.

    3. Let $\alpha(t) = te^{it}$. For $z \in V_\alpha$, denote by $\theta_z$ the unique element of $(0, 2\pi)$ for which $|z|e^{i|z|}=ze^{i\theta_z}$. Compute, in terms of $\theta_z$, an explicit formula for the branch of logarithm $\log_{V_\alpha}$ (i.e., the one defined on $V_\alpha$ which takes the value $0$ at $1$.)

      Draw a sketch of the region $\log_{V_\alpha}(V_\alpha)$, but do not submit it.

  4. Some exponentiation

    In the following question, we will work always with the principal branch of $z^\alpha$: the one defined for $z \in \C\setminus(-\infty, 0]$ corresponding to the logarithm taking value $0$ at $1$.

    1. Compute $(-i)^{1/2}$ and $5^{i+1}$.
    2. Let $\alpha \gt 0$. Determine all points $t_0 \in (-\infty, 0]$ for which \[\lim_{\substack{z \to t_0 \\ z \in \C\setminus(-\infty, 0]}} z^\alpha\] exists.
    3. Determine the range of $z^i$. (I recommend, but do not require, that you also produce a diagram indicating the value $z^i$ takes on a typical ray from the origin and on a typical circle about $0$.)

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.