$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: April 22nd, 2021

Math 104 Assignment 11

  1. Inverses

    Suppose that $f : (a, b) \to \R$ is differentiable with $f'(x) \gt 0$ for all $x \in (a, b)$.

    1. Prove that $f$ is strictly monotonically increasing, i.e., if $a \lt x \lt y \lt b$ then $f(x) \lt f(y)$.
    2. Note that $f$ is one-to-one, and so has an inverse function $g : f((a, b)) \to (a, b)$. Show that $g$ is continuous.
    3. Show that for all $x \in (a, b)$, we have $f(x) \in f((a, b))^\circ$ (the interior of $f((a,b))$).
    4. We saw that if $g$ is differentiable at $f(x)$, it must be the case that \[g'(f(x)) = \frac1{f'(x)}.\] Verify that $g$ is differentiable at $f(x)$.
  2. A pathological function

    Let $f : [0,1] \to \R$ be defined as follows: \[ f(x) = \begin{cases} 0 & \text{ if } x \notin \Q \\ 1 & \text{ if } x = 0 \\ \frac1q & \text{ if } x = \frac{p}{q} \text{ with } p \in \Z, q \in \N, \text{ and } p, q \text{ have no common factor}.\end{cases}\] (For example, $f(0) = f(1) = 1$, $f(1/2) = 1/2$, $f(1/4) = f(3/4) = 1/4$.)

    Prove that $f$ is integrable, and find its integral.

  3. Integrals are insensitive to individual points

    Next week, we will prove that linear combinations of integrable functions are integrable, and that when $f, g : [a, b] \to \R$ are integrable and $\lambda \in \R$, we have \[\int_a^b f(x) + \lambda g(x) \,dx = \int_a^b f(x)\,dx + \lambda \int_a^b g(x)\,dx.\] We will also prove that continuous functions are integrable. These facts may come in useful in this problem.

    1. Suppose that $f : [a, b] \to \R$ is non-zero at only finitely many points. Prove that $f$ is integrable, with \[\int_a^b f(t)\,dt = 0.\]
    2. Suppose that $f : [a, b] \to \R$ is integrable, and $g : [a, b] \to \R$ is such that $f(x) = g(x)$ for all but finitely many $x \in [a, b]$. Show that $g$ is integrable, and \[\int_a^b f(s)\,ds = \int_a^b g(y)\,dy.\]
    3. Suppose that $f : [a, b] \to \R$ and $g : [b, c] \to \R$ are integrable, and define \begin{align*} h : [a, c] &\longrightarrow \R \\ t &\longmapsto \begin{cases} f(t) & \text{ if } t \in [a, b] \\ g(t) &\text{ otherwise.}\end{cases}\end{align*} Prove that $h$ is integrable, with \[\int_a^c h(t)\,dt = \int_a^b f(t)\,dt + \int_b^c g(x)\,dx.\]
    4. Suppose that $\varphi : [a, b] \to \R$ is bounded, and continuous at all but finitely many points in $[a, b]$. Prove that $\varphi$ is integrable.
  4. Properties of integrals

    1. Let $f : [0, 1] \to \R_{\geq 0}$ be continuous. Show that $f = 0$ (that is, $f$ is the constant function $0$) if and only if \[\int_0^1 f(t)\,dt = 0.\]
    2. Show that if the assumption of continuity is dropped in Part A, it is no longer true.
    3. Suppose that $f, g : [a, b] \to \R$ are such that $f(t) \leq g(t)$ for all $t \in \R$. Show that $U(f) \leq U(g)$. (Note that, as a consequence, if $f$ and $g$ are integrable then $\int_a^b f(t)\,dt \leq \int_a^b g(t)\,dt$.)

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.