$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: February 18th, 2021

Math 104 Assignment 4

  1. Interiors

    Let $(M, d)$ be a metric space. Recall that the interior of a subset $E \subseteq M$ is defined as \[E^{\intr} = \set{x \in M \mid \exists r \gt 0, B_r(x) \subseteq E}.\]
    1. Show that the interior of any set is open.
    2. Show that $E$ is open if and only if $E = E^\intr$.
    3. Prove that if $G \subseteq E$ is open, then $G \subseteq E^\intr$.
    4. Prove that the complement of the interior of $E$ is the closure of the complement of $E$. That is, show that \[\paren{E^\intr}^c = \overline{E^c}.\]
    5. Prove or provide a counterexample to the following claims:
      1. $\overline{E} = \overline{E^\intr}$.
      2. $E^{\intr} = \paren{\overline{E}}^\intr$.
    6. Let $E = \big(\Q\cap (0, 2)\big) \cup [1, 3] \cup \set5 \subset \R$. Determine $E^\circ$.
  2. Relatively open sets

    Suppose that $(M, d)$ is a metric space, and $X \subseteq M$. Recall that $X$ is therefore a metric space with metric inherited from $M$: for $x, y \in X$, we have $d_X(x, y) = d(x, y)$. However, the open balls in $X$ are different from those in $M$. We emphasize this by writing $B_r^X(x)$ or $B_r^M(x)$ to indicate where we are taking the ball. Explicitly, if $x \in X$, \[B_r^X(x) = \set{y \in X \mid d_X(x, y) \lt r}, \qquad\qquad\text{while}\qquad\qquad B_r^M(x) = \set{y \in M \mid d(x, y) \lt r}.\] It also follows that we have different notions of "open" between $X$ and $M$: if $G \subseteq X$, we say $G$ is open relative to $X$ if for every $x \in G$ there is $r \gt 0$ so that $B_r^X(x) \subseteq G$.

    1. Show that if $U \subseteq M$ is open relative to $M$, then $U \cap X$ is open relative to $X$. (Hint: notice that for $x \in X$, $B_r^X(x) = B_r^M(x) \cap X$.)
    2. Show that if $G \subseteq X$ is open relative to $X$, then there is some $U \subseteq M$ open relative to $M$ so that $G = U \cap X$. (Hint: use problem 1.)
    3. Give an explicit example of a metric space $M$ and sets $G \subseteq X \subseteq M$ so that $G$ is open relative to $X$ but not relative to $M$. (Hint: take $X$ to be a subset of $M$ which is not open.)
    4. Suppose $K \subseteq X$. Prove that $K$ is compact relative to $X$ if and only if it is compact relative to $M$. (Hint: use parts A and B to convert open covers relative to $M$ to open covers relative to $X$ and vice versa.)
  3. Limit Cluster points

    Let $(M, d)$ be a metric space, $E \subseteq M$, and $E'$ be the set of limit cluster points of $E$.

    1. Show that $x \in E'$ if and only if every open set containing $x$ contains infinitely many elements of $E$.
    2. Prove that $x \in \overline{E}$ if and only if for every $r \gt 0$, $B_r(x) \cap E \neq \emptyset$.
  4. Compact sets in the discrete metric

    Let $M$ be a set, and $d$ the discrete metric on $M$, which is given by \[d(x, y) = \begin{cases}0 & \text{ if } x = y \\ 1 & \text{ otherwise}\end{cases}.\] Which subsets of $M$ are compact?

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.