$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$
Due: March 4th, 2021

Math 104 Assignment 6

  1. Distances and convergent sequences

    Let $(M, d)$ be a metric space.

    1. Let $(x_n)_n$ be a sequence in $M$, and $L \in M$. Prove that $(x_n)_n$ converges to $L$ if and only if the sequence of real numbers $(d(x_n, L))_n$ converges to $0$.
    2. Suppose that $(a_k)_k$ and $(b_k)_k$ are sequences in $M$ which converge to $a$ and $b$ repsectively. Prove that \[\limni[k] d(a_k, b_k) = d(a, b).\]
  2. Limits and order properties

    1. Suppose that $(a_n)_n$ is a convergent sequence in $\R$, and there are $N \in \N$ and $b \in \R$ such that $a_n \leq b$ for all $n \gt N$. Prove that \[\lim_{n\to\infty} a_n \leq b.\]
    2. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$. Prove that \[\lim_{n\to\infty} a_n \leq \lim_{n \to \infty} b_n.\] (Hint: use Part A.)
    3. Suppose that $(a_n)_n$ and $(b_n)_n$ are convergent sequences in $\R$ such that for some $N \in \N$ and every $n \gt N$, $a_n \leq b_n$, and so that \[\lim_{n\to\infty}a_n = \lim_{n\to\infty}b_n.\] Suppose further that $(c_n)_n$ is another sequence so that $a_n \leq c_n \leq b_n$ for $n \gt N$. Prove that $(c_n)_n$ converges to the same limit as $(a_n)_n$ and $(b_n)_n$.
    4. Show by example that if $(a_n)_n$ is a convergent sequence in $\R$ and $b \in \R$ is such that $a_n \lt b$ for all $n$, it may not be the case that \[\lim_{n\to\infty} a_n \lt b.\]
    5. Suppose that $(a_n)_n$ is a sequence in $\R$ which is decreasing in the sense that $a_n \geq a_{n+1}$ for every $n \in \N$. Prove that $(a_n)_n$ converges if and only if it is bounded below.
  3. Square roots and convergent sequences

    1. Suppose that $(z_a)_a$ is a sequence in $\R_{\geq0}$ with \[\lim_{s\to\infty} z_s = z.\] Show that $(\sqrt{z_n})_n$ converges to $\sqrt z$. (Hint: it may be useful to treat the case $z = 0$ separately; it may also be useful to use the fact that $(\sqrt{z_t} - \sqrt{z})(\sqrt{z_t}+\sqrt{z}) = z_t - z$. You should not assume anything about continuity.)

    Let $a_1 = 1$ and for $n \in \N$, define $a_{n+1} = \sqrt{3+2a_n}$.

    1. Prove that for every $n \in \N$, we have $0 \leq a_n \leq a_{n+1} \leq 6.02\times 10^{23}$.
    2. Prove that $(a_n)_n$ converges, and find its limit.
  4. A compact set

    Suppose that $(a_n)_n$ is a sequence in a metric space $(M, d)$ which converges to a limit $a$. Prove that $\set{a_n\mid n \in \N} \cup \set a$ is compact.

Here are some further problems to think about out of interest. You do not need to attempt them, nor should you submit them with the assignment.