$$ \newcommand{\cis}{\operatorname{cis}} \newcommand{\norm}[1]{\left\|#1\right\|} \newcommand{\paren}[1]{\left(#1\right)} \newcommand{\sq}[1]{\left[#1\right]} \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\ang}[1]{\left\langle#1\right\rangle} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\C}{\mathbb{C}} \newcommand{\D}{\mathbb{D}} \newcommand{\R}{\mathbb{R}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\N}{\mathbb{N}} \newcommand{\F}{\mathbb{F}} \newcommand{\T}{\mathbb{T}} \renewcommand{\S}{\mathbb{S}} \newcommand{\intr}{{\large\circ}} \newcommand{\limni}[1][n]{\lim_{#1\to\infty}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} $$

Warning: include_once(../../../../../site/defns.php): Failed to open stream: No such file or directory in /home/ilc/repos/workhg/teaching/2021/spring/104/www/sidebar.php on line 1

Warning: include_once(): Failed opening '../../../../../site/defns.php' for inclusion (include_path='.:/usr/share/php') in /home/ilc/repos/workhg/teaching/2021/spring/104/www/sidebar.php on line 1

Useful links

Office hours:

  • Mondays 9:00-10:00
  • Wednesdays 14:00-16:00

Email

GSI:

Rahul Dalal
  • M 10:30-12:30
  • TTh 17:30-19:30
  • WF 11:00-13:00

Exams

Let $(\mathcal M, d)$ be a metric space.

  1. Suppose that $K_1, K_2 \subseteq M$ are compact. Which is the weakest assumption below which guarantees that $K_1 \cup K_2$ is compact?

    1. $K_1\cap K_2 \neq \emptyset$.
    2. $M = \R^n$ for some $n \in \N$.
    3. $K_1 \subseteq K_2$.
    4. No further assumption.
  2. Which of the following is the statement that the sequence $(a_n)_n$ does not converge?

    1. $\forall L \in M \, \forall r \gt 0 \, \exists N \, \forall n \gt N, \, d(a_n, L) \geq r$.
    2. $\exists L \in M \, \exists r \gt 0 \, \forall N \, \exists n \gt N, \, d(a_n, L) \geq r$.
    3. $\forall L \in M \, \exists r \gt 0 \, \forall N \, \exists n \gt N, \, d(a_n, L) \geq r$.
    4. $\exists L \in M \, \forall r \gt 0 \, \exists N \, \forall n \gt N, \, d(a_n, L) \geq r$.
  3. If $E \subseteq M$ is not compact, then no infinite open cover of $E$ has a finite subcover.

    1. True.
    2. False.
  4. If $(x_n)_n$ is a sequence which takes on only finitely many distinct values, it converges.

    1. True.
    2. False.